Assessment of Local Geoid in Brunei Darussalam

Muhammad Abdul Hadi bin Haseri

Strategies, approaches and analysis

• Shape of the Earth

- Height may be defined as the vertical distance measured to a reference surface.
 - Ellipsoidal Height (H)
 - Orthometric Height (h)
 - Geoid Undulation (N)
- Level surfaces
 - Mean Sea Level
 - Geoid

Goals & Objectives

Goal

Provide reliable 3D reference frame network

Objectives

- **O** Densify GNSS observations on Benchmarks
- O Assess the current Brunei-fitted geoid
- O Compute the datum offset between different level surfaces

Global Navigation Satellite System (GNSS) - constellation of satellites providing signals from space that transmit positioning and timing data to GNSS receivers – GNSS levelling.

Advantages

- Horizontal and vertical networks are connected.
- Datum will be fairy stable.
- Sustainable datum maintenance.
- Compatibility with space-based positioning systems.
- Accessibility of datum via GNSS.

Disadvantages

- Uncertainties in geoid models.
- Accuracy of elevations is limited to the accuracy of GNSS.

Data & Methods

- Sea Surface Topography
- Geoid is said to coincide with MSL surface.
- Residuals are represented in RMS.

- Assessment continues by deriving geometric geoid.
- Main function is for verifying the Brunei-fitted geoid.
- Depicts the accuracy of the local geoid model in RMS.

Normal Probability Plot

●Brunei Muara ●Temburong ●Tutong ●Kuala Belait

$(x) = N_{fitted} - N_{geometric}$			25
Relative Precision			$\begin{bmatrix} 20 \\ - 15 \end{bmatrix}$
District	No. of BMs	RMS [cm]	- 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Brunei Muara	99	4.43	- o grutace Ac
Kuala Belait	63	8.44	on -5 peter -10 dx
Tutong	26	3.08	^W -15 -20
Temburong	17	22.14	-25
Total	205	8.56	-30 [/ -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 Surface Accuracy [cm]

Normal Probability Plot

●Brunei Muara ●Temburong ●Tutong ●Kuala Belait

Factors affecting accuracy of geoid model:

- 1. Distribution & no. of reference station
 - Not well distributed
 - No reference benchmarks in **Temburong**;
 - Thus, significantly separation between MSL and geoid level surface of ~22 cm.
 - Generally, other districts are relatively acceptable less than < 4 cm.

- 2. Accuracy of ellipsoidal height
 - Accuracy is limited to the accuracy of GNSS.
 - Uses error propagation to provide an estimate of the delay resulting from orbit, satellite clock, ionospheric and tropospheric delay (URE) + equipment and environmental errors

Error source	Bias [m]	Random [m]	Total [m]
Orbit data	2.1	0.0	2.1
Satellite clock	2.0	0.7	2.1
Ionosphere	4.0	0.5	4.0
Troposphere	0.5	0.5	0.7
Multipath	1.0	1.0	1.4
Receiver measurement	0.5	0.2	0.5
UERE [m]	5.1	1.4	5.3

Hofmann-Wellenhof, B, et. al. 2008

Observation Residuals (Offset)

- In theory, the difference between these values should be zero.
- In practice, using actual observations gives a residual, or measure of misfit between the them.
- As a result, this range is between 2 18 cm

Surface Accuracy

Accuracy of the local geoid 3 – 22 cm

National Datum Development

Densify GNSS observations on Benchmarks

Assess the current Brunei-fitted geoid

Compute the datum offset between different level surfaces

Future Outlook

ৰ্শি Further adjustments of local geoid **() Temburong**

Thank You

Muhammad Abdul Hadi bin Haseri

Geodetic Section Survey Department Ministry of Development

+673 8838555

Hadi.Haseri@survey.gov.bn