

14th South East Asia Survey Congress

Future and Prospect for Monitoring Deep-Seated Landslide Activity over Extensive Area

Keng-Ping Cheng, <u>Hsiao-Yuan (Samuel)Yin</u>, Chen-Yang Lee, Rou-Fei Chen

Director, Debris Flow Disaster Prevention Center Soil and Water Conservation Bureau, Taiwan

August 15, 2017

Outline

- 1. Challenges of Typhoon Morakot
- 2. Comprehensive Plan of Large-scale Landslide Hazard Mitigation

Risk Assessment of Potential Landslides Multi-scale Monitoring Techniques

3. Future Development and Conclusions

Tropical cyclone frequency

* average based on eight years only.

Sources: PREVIEW Global Cyclone Asymmetric Windspeed Profile, UNEP/GRID-Europe.

Soil and Water Conservation Bureau (SWCB)

Challenges of Typhoon Morakot, 2009

Max. accumulated rainfall: 3059.5mm.
 Coverage area of total rainfall ≥2000mm: 320,000km².
 Total new landslides: 39,492 ha.
 Casualty and missing: 699 people.
 Total damage: 6.7 billion USD(1.6% GDP)

(Aug 6-10, 2009)

Sediment Disaster

Flooding Disaster

Soil and Water Conservation Bureau (SWCB)

Debris Flow Warning and Evacuation

During typhoon Morakot, the SWCB issued 21 debris flow warnings to local governments for evacuation activities based on realtime weather information.

Debris flow warning	Warning ravines	County (City)	Town	Village
Red alarm	519	12	61	230
Yellow alarm	338	14	58	163

9,100 people were evacuated by local governments according to the warning. Among them, **1,046** people escaped from the possible casualties.

Conservation Bureau (SWCB)

Deep-Seated Landslide in Hsiaolin Village

Landslide occurred at am 6:16, Aug 9, with R=1676.5 mm Average slope: 22 degrees; Landslide area: 202 ha; Depth: 82 meters ; Volume: 25 million m3 Dead and missing: 457 casualties

Formosat-2

2. Comprehensive Plan of Large-scale (Deep-Seated) Landslide Hazard Mitigation

Risk Assessment of Potential Landslides Multi-scale Monitoring Techniques

Comprehensive Plan of Large-scale Landslide Hazard Mitigation under Climate Change Impact (2017-2020, Budget: 110 million USD)

Definition: Area 10 ha; Depth 10 meters ; Volume 100,000 m3

Induced tsunami upstream

Landslide dam

Masahiro Chigira

Threaten downstream houses

LiDAR : Light Detection And Ranging

Only ground points are selected to construct high resolution DEM

On-site Investigation of Landslide Features

Identification of Largescale Landslide Potential Areas

153 large-scale landslides are selected from 3,763 sites surveyed by CGS, Forestry Bureau, and SWBC.

 $(2010^{2}015)$

Large Scale Landslide	Central Geological Survey	Forestry Bureau	SWCB	SUM
Analysis Frame	571	763	251	1,482
Sites	1,125	2,523	125	3,763
Potential areas (km ²)	413.86	789.30	49.62	1,178.01

Risk Assessment of 153 Large-scale Potential Landslide

Risk = Hazard X Vulnerability Risk degree = Occurrence degree X Protected targets

Occurrence Degree (Weights of evidence)

 8 Factors: Aspect, Slope, Vegetation(NDVI), Rock mass strength, Dip slope degree, Elevation, Distance of river, Distance of geological structure

Protected Targets

- Buildings
- Transportation facilities
- Important infrastructures
- Water storage range of reservoir

Risk Degree (153 sites)		Occurrence degree		
		Low	Mid	High
Protected Targets	Low	Low	Low	Mid
	Mid	Low	Mid	High
	High	Mid	High	High

Multi-scale Monitoring of Large-scale Potential Landslide Areas

Risk Degree

TCP InSAR for Large-scale Potential Landslide Monitoring Temporarily Coherence Point(TCP) Interferometric Synthetic Aperture Radar(InSAR)

Image courtesy of Tim Masterlark, UW-Madison Ph.D. almunus TCP InSAR technology has been proven very useful in assessing remotely ground displacements. It is a fast and economic approach to evaluate the activity of largescale potential landslide.

Advantages

- ✓ All-day, all-weather
- Wide range, spatial continuity
- High precision surface
 deformation without
 ground instruments

Detection of Large Scale Potential Landslide in Chingjin Area, Central Taiwan

Soil and Water Conservation Bureau (SWCB)

Middle Risk

Surface Displacement Monitoring System

6 single frequency GPS stations, 1 rain gauge, and 1 extensometer

GPS Monitoring Example in Sulin, New Taipei City

The figures show a very good correlation between landslide displacement and heavy rainfall. June 19 - July 19, 2016, torrential rain Eastward:70 mm, Downward:40 mm

Sep. 25 - 28, 2016, typhoon Megi Eastward:20 mm, Downward:15 mm

Soil and Water Conservation Bureau (SWCB)

High On-site Detailed Observation in Wanshan, Kaohsiung City Risk

Geophysical exploration-*Electrical Resistivity Survey* Comparing the resistivity profile with geo-drilling data for stratum cross section.

Different On-site Detailed Observation Techniques

Geological Investigation

Boring core

Geological profile

Deployment of On-site Monitoring Sensors

N R		Monitoring Items	Number Frequency
		1. Rainfall	1 point Every 5 minutes
		2. Groundwater level	3 points Every 5 minutes
		3. Surface tilt	3 points Every 5 minutes
	Legend	4. TDR	1 point Every 5 minutes
	 Groundwater level TDR 	5. CCD camera	2 points Every 1 minutes
	 Data Log Rainfall gage 	6. Water inrush	1 point Every 5 minutes
	CCD Camera	7. Inclinometer	5 points, manual Every month
	Surface Tilt meters	8. Surface displacement	10 points, manual Every month

3. Future Development and Conclusions

Influence Area of Large-Scale Landslide

Runout distance L_{max} can be derived from equivalent friction coefficient

$$f = \log\left(\frac{H}{L_{Max}}\right) = 0.624 - 0.157 \log V$$

(Scheidegger, 1973)

$$V = 0.1025 \times A_L^{1.401}$$
 (Shieh et al, 2015)

Deposit width W_{MAX} is about 1.5-2 times than that of landslide width

$$W_{Max} = 2W_L$$

(Shieh et al, 2015)

Landslide Volume, V

Rainfall analysis of historic landslides events

- New large-scale landslide
- Accumulated rainfall > 1000 mm
- From accumulated rainfall FIG Occurring times are near inflection point
- From rainfall hydrograph Landslides occurred after the peak
- Enlargement or combination
- Accumulated rainfall 200-600 mm
- From accumulated rainfall FIG Occurring times lie among the rising period
- From rainfall hydrograph Landslides occurred before or near the peak

Application of Seismic Network on Landslide Detection Broadband Array in Taiwan for Seismology, BATS

Ground vibrations generated by landslide can be detected by seismometer. We try to acquire the initiation time of large-scale landslide through BATS.

Vibrations of Hsiaolin large-scale landslide

Conclusions

- **1.** The prevention measures for debris flows disasters have been developed more than 15 years. The experiences could be the basis of developing a new mitigation strategy for large-scale landslide.
- 2. From the lessons of Hsiaolin village, the large-scale landslide has become a new challenge in the coming future of Taiwan which results in the brand new project-the comprehensive plan of large-scale landslide hazard mitigation under climate change impact. It might take another 10 years to fulfill all those tasks.
- **3.** Different up-to-date techniques such as Lidar DEM, TCP InSAR, single frequency GPS system, traditional on-site detailed observation skills and BATS system should be integrated in order to mitigation the possible hazards of large scale landslides in the future.

Thank You for Your Attention

Soil and Water Conservation Bureau Always Working with You