

14th South East Asia Survey Congress (SEASC) Brunei Darussalam in 2017

央地

The Road from National LiDAR mapping program to Zonation of the Geologically Sensitive Areas in Taiwan

feily@moeacgs.gov.tw

uan

OUTLINE

1 Geography & Geology of Taiwan

2

Airborne LiDAR & Aerial photograph under the Program of National Land Preservation (2010- 2016)

3

DEM Data Applied in Zonation of the Geologically Sensitive Areas

Conclusion

orthoimage(2,503×485m)

Geography & Geology of Taiwan

Point Cloud of ground point

Horizontal Displacement analyzed by GPS Data, from 2002 to 2011

>33 Active Faults **located in Taiwan**

tsuchs

Central Range

Eastern Coastal Range

圓例

成指定《虚处

121.28

活動斷層分布圖 (2010) ·清部中央地質調查所

Western Coastal Ple

Plate tectonic settings of Taiwan

Mountains account for 30% the total area, hillslopes and plateaus for 40%, and plains

more than 100 mountains higher than 3,000 meters

Taiwan is located on the tracks of typhoons in northwest Pacific area

Track map of Typhoon Morakot

Airborne LiDAR & Aerial photograph under the Program of National Land Preservation (2010- 2016)

FORMOSAT-2 Satellite Imagery

Airborne LiDAR(Airborne Light Detection And Ranging)

Project of Investigation and Analysis for Geologically Sensitive Areas under the Program of National Land Preservation (2010-2016)

The High Resolution LiDAR <u>DEM & DSM of 1</u> <u>m grid</u> and <u>digital aerial</u> photograph of 50cm grid Generation

The High Resolution LiDAR DEM & DSM Data <u>QA/QC</u> by quality assurance team

Result : (1)DEM , (2)DSM and (3)Orthoimage

 (1) Geological sensitive areas
 (2) Potential geohazard analysis

With Airborne-LiDAR data and orthoimage, to investigate and analyze geologically sensitive areas, geological and topographical characteristics, river system analysis etc.

Project of Investigation and Analysis for Geologically Sensitive Areas under the Program of National Land Preservation

Results of 2010 - 2012

Variety of LiDAR & Aerial Photograph equipments from different contractors

Different software and hardware equipment (with different advantages and know how)

Company	Equipment	Model
	Airborne-LiDAR Scanning	Riegl LMS-Q680i
ST	Digital camera	IGI DigiCAM P65+
(Strong Engineering Consulting Co., Ltd.)	DOS Sustam	Trimble 4700 Trimble 5700
	POS System	Leica SR530
RW	Airborne-LiDAR Scanning	Leica ALS70-HP
(Real World Engineering	Digital camera	DMC AIC pro P65+
Consultants Inc.)	POS System	Trimble POS610(200Hz)
CompanyEquipmentST (Strong Engineering Consulting Co., Ltd.)Airborne-LiDAR Scanning Digital cameraPOS SystemAirborne-LiDAR Scanning 	ALTM Pegasus	
	Digital camera	Dimac Ultralight + 60MP
	POS System	Trimble 4000SSI/ 4700/5700
GF	Airborne-LiDAR Scanning	Leica ALS60
(GeoForce Technologies	Digital camera	Trimble Aerial Camera P65+
Co., Ltd.)	POS System	Leica SR530

EDUCATION AND TRAINING

Flight Plan & Strip

Protected areas(selected areas near mountainous settlements),need more denser flight strips, acquire more point cloud in the ground

Protected areas

LiDAR data and aerial photographs image quality assurance project(6 items, 22 tables) NCKU RESEARCH & DEVELOPMENT FOUNDATION (Department of Geoinformatics & Satellite Geoinformatics Research Center)

1 Elight plan	Check Flight plan		
check	Check LIDAR system calibration (including calibration field)		
	Check preliminary results check and flight scan report		
2. Control	Check control and measuring results		
measurements	Check new GPS base station		
check	Check elevation control points and horizontal control point		
3. Point cloud	Check point cloud format		
heading	Complete coverage of the survey area and adjacent heading overlapping rate checking		
adjustment	Check point cloud density		
CNECK	Heading Adjustment written information		
	Heading relative error (internal precision)		
4. Point cloud	DEM and DSM data in ASCII format check		
filtering results	DEM and DSM data in other formats and contour map format checks		
CNECK	Check point cloud filtering and DEM results		
5. Aerial	Check aerial images covering integrity		
photography	Aerial camera		
check	Aerial image quality		
6. orthoimage	Check the format and quality of the orthoimage		
CNECK	Check the feature continuous and rationality		

Edge discrepancies reasons : • Different instruments • Different measurement results • Surveying at different times • Terrain change • Different Seasons • Different crops

before correction

Different color or tone of the aerial photographs

Compare the results of different equipments, different projects

orthoimage(2,503×485m)

ground point from "Program of National Land Preservation"

ground point from "plan of metropolitan Taipei"

LiDAR point cloud filtering list of obvious errors (common mistakes)

1	Building is not filtered	7	Non-permanent mound not filtered
2	The dike or solid road was filtered (including embankment, ridge)	8	Not filtered out unreasonable point cloud (high or low)
3	Bridge (including viaducts), culverts not filtered	9	Strips with obvious deviation (adjustment problem)
4	The waters of the point cloud is not filtered	10	Sidelin of DEM
5	Ground point excessively filtered	11	Insufficient ground point
6	The vegetation is not filtered out		

LiDAR point cloud density checking(example)

Aroa(2012)	average point density at	average point density at	
Area(2013)	Low Area(Ele.< 800m)	mountain area(Ele.> 800m)	
4-1	2.1 Points / m ²	1.6~1.8 Points / m ²	
4-2	2.6 Points / m ²	1.72~3.92 Points / m ²	
4-3	2.2 Points / m ²	2.2 Points / m ²	
4-4	2.2~2.5 Points / m ²	2.2~2.5 Points / m ²	

Standard for checking :

 at least 2 points per square meter, elevation is lower than 800 m;
 at least 1.5 points per square meter,

elevation is higher than 800 m.

Protected area (slopeland settlement area) is 95% of the average density of the area required more than 2 points, 99% of the average density of the area required more than 1 point.

Point Cloud Filtering

code	Class description	Level
2	Ground	2
9	Water	9
30	Outlier	30
31	Others	31

Improvement the point cloud density

- Equipment: using Multi-channel /Multi-pulse equi.
 Flight: increasing flight lines; choosing different flying directions
- Using full-waveform LiDAR extraction techniques

Penetration rate increased, less flights required

System (ALTM)	Altitude(m)	FOV	PRF (kHz)	Swath Width (m)	Point density (pts/m ²)	Flight line
30/70 Single-channel	2,600	20	50	783	1.23	8
Pegasus Double-channel	2,600	40	100(50*2)	1,601	1.21	4

Dense vegetation with steep slope

Improve the ground points under dense vegetation Using full-waveform LiDAR extraction technique

Discrete LiDAR's penetration was 9.98%. After the full-waveform extraction, the penetration increased by 3.55%.

In the study area of very dense forest, fullwaveform LiDAR can give ground points 34~35% more than discrete LiDAR.

Discrete & full-waveform LiDAR

🛔 🕇 🗕 🗖 👪 🖑 🖉 여 여 🖗 💆 🔺 🖣

Discrete LiDAR

discrete ground points full-waveform grounds points

Different slope direction with different cloud density

Boundary can't adjust owing to:

Topographic features changed by natural or man-induced activities from different year's surveying

DEM/DSM with 1m * 1m resolution

Adjust the boundary

Central Geological Survey, MOEA Error check - point cloud filtering

Before correction

After correction

Orthoimage

Only 30 hours of flight for a month, and 200 hours for a year in Taiwan

Density of point clouds in each subarea

代碼	Scanning system	Density of points(point/m ²)	Year
A1	Optech ALTM 30/70 、	5.06	2010
	Optech ALTM Gemini >		
	Optech ALTM Pegasus		
B1	ORION M200 v	4.55	2010
	Leica ALS60		
C1	Leica ALS60	5.02	2010
A2	Optech ALTM Pegasus	4.84	2011
B2	Leica ALS60	3.75	2011
C2	Leica ALS60	3.07	2011
D2	Riegl LMS-Q680i	5.45	2011
A3	Optech ALTM Pegasus	4.21	2012
B3	Leica ALS60	4.00	2012
C3	Leica ALS60	3.07	2012
B4	Leica ALS70-HP	4.48	2013
D4	Riegl LMS-Q680i	4.98	2013
A4	Optech ALTM Pegasus	4.59	2013
C4	Leica ALS60	3.62	2013
B5	Leica ALS70-HP	5.07	2014
D5	Riegl LMS-Q680i	5.32	2014
A5	Optech ALTM Pegasus	4.66	2014
C5	Leica ALS60	4.82	2014
B6	Leica ALS70-HP	4.00	2015
D6	Riegl LMS-Q680i	4.55	2015
A6	Optech ALTM Pegasus	6.00	2015
C6	Leica ALS60	5.05	2015

31

DSM of Taiwan by reprocessing LiDAR data using pit-free algorithm (Lin, 2017)

DEM Data Applied in Zonation of the Geologically Sensitive Areas

RRIM (Red Relief Image Map) can easily identify finescale geomorphic change, it combines the **positive** openness (Red) and negative openness (Grey) values. Positive openness shows convex, ridge, scarp and terrace, whereas negative openness describe concave, valley, river and gully etc.

Large-scale landslide area; volcanic area

NewLand Mapping & Surveying Co.,Ltd

赤色立體地圖是一種嶄新的地形渲染技術,為日本 千葉達郎博士於 2002 年發 明。本公司透過與現有各類地形表現方式進行比較,可突顯赤色立體地圖的優點。

地面全景影像 ★赤色立體地圖較正射影像圖更能看出隱藏在植被下的細微 也形,容易判讀出地質斷層帶及土石流潛勢區域。

資料來源:日本亞洲航測株式会社 台灣代理:新陸國土測繪有限公司

Sunshine shading map with 8 directions

NewLand Mapping & Surveying Co.,Ltd

The term "<u>geological</u> <u>hazard</u>" means a natural or humaninduced

- earthquake(1),
- tsunami(2),
- volcanic eruption(3),
- fault activity(4),
- Iandslides(5),
- Iandslip(6),
- debris flow(7),
- Iand subsidence(8),
- coastal change(9),

or other disasters induced by geological processes

Topographic features of the Large-scale Landslide

- Ridge with a gentle slope
- Scarp
 reverse slope
 fissures and tension
 cracks
- Double ridge
- Linear depression
- ✓ Slide-body
- ✓ The bulge at the toe
- Gully sidewall and gully headwall failures
- ✓ Bedrock creep
- Older landslides

(Lin modified from WP/WLI,1993)

Geohazard zone may be very close to you !

Site threaten by potential large-scale landslide

Central Geological Survey,

2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000

Techi Dam(completed in 1974)

Forming the 454 ha Reservoir
The highest dam(at 180 m) in Taiwan
One of the tallest dam in the world

Detailed geological mapping – The <u>rock units</u> & <u>bedding plane</u> analyzed on the northern bank of Keelung River

Geology Act (Dec.1, 2011) Article 5

The central competent authority shall publicly announce areas with special geologic scenery, special geological environments, or potential geological hazards to be geologically sensitive areas.

More than 33 Active Faults locating in Taiwan

(1999 Chelungpu Fault)

Identifying the geomorphologic evidences of faults by using 1m × 1m DEM Locating the accurate position of active faults Investigating the activities of active faults

The morphotectonic analysis of the active faults based on LiDAR data

The detail structural characteristics of a fault analyzed by 3D anaglyph images

Geologically Sensitive Area of Chelunpu Active Fault

Conclusion

High resolution DEM data _____ geological hazard

Having : new tool, new technique, new idea Facing : new issues, new disasters new challenges, new missions

Paolo Tarolli (2014) pointed out, our mission is: (1) to "help in scheduling appropriate environmental planning for sustainable development"; (2) to "mitigate the consequences of anthropogenic alteration"; (3) to "better understand the evolution of our Planet".