
Performance Analysis of Guangxi CORS

Geomatics Center of Guangxi

Yuqing He (Grace) Email: hyq_grace@163.com 2017.8 Brunei

GEOMATICS CENTER OF GUANGXI

1-Guangxi Geographic Data Management

• DOM/DEM/DRG/DLG

2-Guangxi CORS Operation and maintenance

3-Digital Guangxi Geo-spatial Infrastructure

• MapWord Guangxi

4-High-resolution Earth Observation System
GF-01, GF-02, ZY-3, TH Satellite Remote Sensing Data

Global Navigation Satellite System (GNSS)

Global Navigation Satellite System (GNSS)

GPS (Global Positioning S	ystem) USA	1958 36/31
GLONASS	Russia	1993 30/24
BeiDou	China	2000 35/23
GALILEO	European Union	2002 30/18
Quasi-Zenith Satellite System	(QZSS) Japan	2002 3/2
Indian Regional Navigation Satellite System (IPNSS)	India	2012 7/7

BeiDou Navigation Satellite System (BDS)

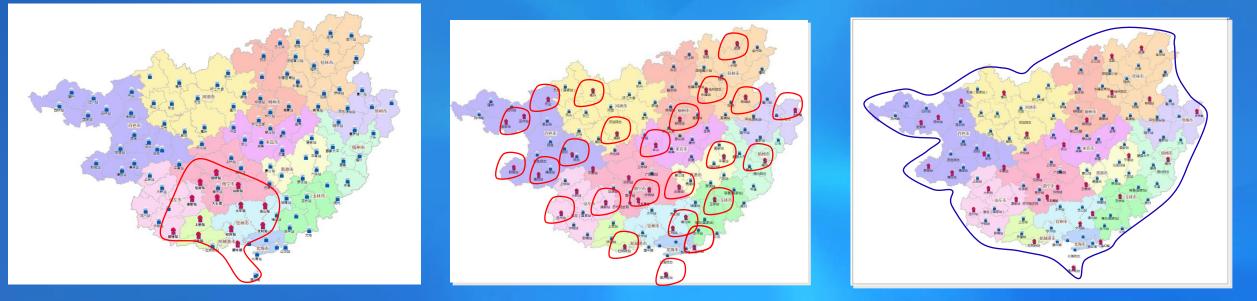
Space stations
Ground control station
User terminals

70°E to 140° E 5° N to 55° N

Timing: 20ns to 100ns Positioning: 10m

Continuous Operational Reference System (CORS)

GUANGXI CORS



1 Data Control Center 169 Stations Connected Average distance=50km 236700 km² coverage 4000 professional users High Accuracy, **Full Coverage All-Weather Real-Time**

Construction of Ground-based Augmentation System of Guangxi Beibu Gulf

2015, Beibu Gulf

2016, Sub-meter level

2017, Centimeter level

Main Concerns

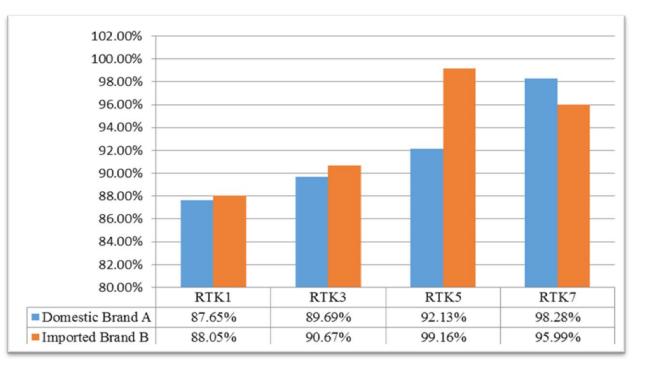
1-Can I receive signal anywhere anytime in any device?
 2-Any significant improvements with Beidou imbedded?

Time Availability--Methodology

Select two testing points outside of covering region: RTK1 (37 km away from network); RTK3 (14 km away from network); select two testing points within covering region: RTK5, RTK7.

*Good operating condition; *Good observation condition' *Meets point position requirements of a static accuracy test.

Time Availability--Methodology


- Continuous observation: 24 hours 1 second sampling frequency
- □records original continuous positioning results In theory: collect 86,400 epoch results.
- □Calculate the ratios of fixed solution number and entire observation number

Time Availability--Results

Beibu Gulf Region: 92.7%

Space Usability-Methodology

Space usability: the scope users can receive network RTK fix solutions real timely

Method: Vehicle-mounted RTK Test

Hypothesis: points uniformly distributed in testing region

Sampling frequency: 1sDriving Speed: 40-60 km/h

Space Usability-Results

Assessed System	Terminal Unit Type	Percentage of Fix Solution Points	
Beidou System of Beibu Gulf	Domestic Brand A	85.6%	
	Imported Brand B	89.0%	
Average		87.3%	

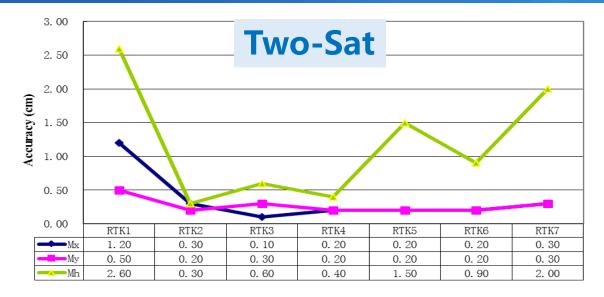
Positioning Accuracy-Methodology

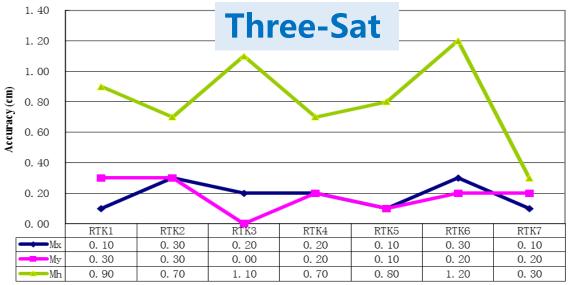
Two-satv.s.Three-satGPS, GLONASSBeiDou, GPS, GLONASS

Goal: network RTK real-time positioning accuracy
Testing points: 7
Locations: mountain, flat lands, urban
Receiver: Domestic Brand A
Method: 30 epochs * 3measurement/point,

Positioning Accuracy-Evaluation

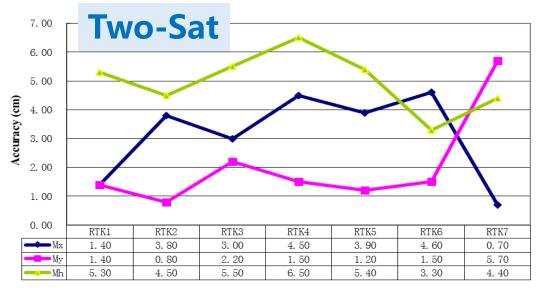
Internally Coincident Precision

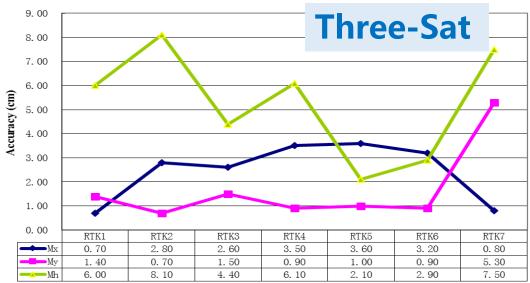

$$J = \sqrt{[VV]/(n-1)}$$


Externally Coincident Precision

$$M = \sqrt{[VV]/(n-1)}$$

Positioning Accuracy-Results




Internally Coincident Precision

$\mu = \sqrt{2}$	/[VV]/(n -	1)
------------------	------------	----

	Accessed System	Mx	Му	Mh
Avg.	Two-Sat	0.40	0.20	1.20
	Three-Sat	0.20	0.20	0.80

Positioning Accuracy-Results

Externally Coincident Precision

$$M = \sqrt{[VV]/(n-1)}$$

	Accessed System	Mx	My	Mh
Avg.	Two-Sat	3.13	2.04	5.00
	Three-Sat	2.46	1.67	5.30

Conclusion

Time availability:

>87.65% external >92.13% internal 92.7% in Beibu Gulf Region

Space usability: 87.3%
 Positioning accuracy:
 Internally Coincident Precision: increase 37.7% horizontally 33.3% vertically

Externally Coincident Precision: increase 20.6% horizontally keep the same level vertically

Development

Yuqing He (Grace) Geomatics Center of Guangxi, China Email: hyq_grace@163.com